Using Queryable State to update ML Algorithms per datapoint for... - Warmerdam & Driesprong
#FlinkForward SF 2017: K. & M. Bode- Queryable State or How to Build a Billing System w/o a Database
#FlinkForward SF 2017: Joe Olson - Using Flink & Queryable State to Buffer...
Berlin Buzzwords 2016: Stephan Ewen - Stream Processor as a Database: Building Online Applications
Flink Forward 2016: Aljoscha Krettek - The Future of Apache Flink
Anatomy of a Stream | Flink with Java
Apache Flink ML Demo
Vincent D. Warmerdam - SaaaS - Sampling as an Algorithm Service
Time-Based Aggregates: The Good, the Bad and the Ugly - Frank Lauterwald (noris network AG)
Vincent D. Warmerdam - TNaaS - Tech Names as a Service
DDSW 19 - REAL TIME - Deep Learning Talk
Flink Forward 2016: Márton Balassi - Streaming ML with Flink
Ferd Scheepers (ING) at #INGlovesIT
Berlin Buzzwords 2017: Maximilian Bode, Konstantin Knauf - How to Build a Billing System Without ...
Building a network stack for optimal throughput / low-latency trade-offs - Nico Kruber
#FlinkForward SF 2017: Ufuk Celebi - The Stream Processor as a Database
FOSDEM 2016 - Aw1126 - Flinkml Large Scale Machine Learning For Apache Flink.mp4
Parameter Server on Flink, an approach for model-parallel machine learning - D. Berecz & G. Hermann
#FlinkForward SF 2017: Ted Dunning - Non-Flink Machine Learning on Flink
Extending Apache Flink stream processing with Apache Samoa ML methods - Piotr Wawrzyniak