p-adic Analytic Geometry and Chromatic Homotopy Theory - Tomer Schlank
What is... p-adic geometry? - Jacob Lurie
Chromatic homotopy theory - Jacob Lurie
p-adic algebraic geometry: p-adic Riemann-Hilbert correspondence - Bhargav Bhatt
The Homotopy Groups of the K(n)-local Sphere - Jared Weinstein
Jacob Lurie: A Riemann-Hilbert Correspondence in p-adic Geometry Part 1
Matthew Morrow - p-adic Milnor K-theory of p-adic rings
Ryomei Iwasa - 1/3 Motivic Stable Homotopy Theory
Colloquium: Akhil Mathew (University of Chicago)
Jacob Lurie: A Riemann-Hilbert Correspondence in p-adic Geometry Part 3
Graphs, root systems, and Wildberger: Office Hours - November 25 2025
Jacob Lurie: A Riemann-Hilbert Correspondence in p-adic Geometry Part 5
The Chromatic Behaviour of Algebraic K Theory
Jacob Lurie: A Riemann-Hilbert Correspondence in p-adic Geometry Part 4
Session 12: Masterclass in Condensed Mathematics
Brauer Groups in Chromatic homotopy Theory (Jacob Lurie) 3/3
Jacob Lurie: A Riemann-Hilbert Correspondence in p-adic Geometry Part 2
Revisiting the Motivic Cohomology of Schemes - Matthew Morrow
Ben Antieau Derived algebraic geometry I
Jack Davies, July 10, 2020
The mod (p,v1) motivic filtration on the topological cyclic homology of topological K-theory
Abstract homotopy theory and applications. 7.02, Grisha Taroyan.
Justin Noel: Galois descent and redshift in algebraic K theory
Introduction to stable homotopy theory - Lecture 1
Session 9: Masterclass in Condensed Mathematics