Math 346 Lecture 10 - Elementary matrices; Inverses and; the Equivalence Theorem
Math 346 Lecture 10 - Finding inverses, Solving systems and Cramer's Rule
Math 346 Lecture 10 - Bases and Coordinates
Math 346 Lecture 11 - Dimensions and Change of Bases
Math 346 Lecture 15 - Eigenvalues & Eigenvectors; Diagonalization; Solving ODEs
Math 346 Lecture 7 - Cramer's Rule; More on Vector Spaces; Subspaces
Math 346 Lecture 12 - Bases; Row space, Column space, and Null space
Math 346 Lecture 11 - Intro to Vector Spaces
Math 346 Lecture 9 - Pivotal condensation; More facts about determinants, and; Intro to inverses
Math 346 Lecture 8 - Properties of determinants and Invertible matrices
Math 346 Lecture 22 - Matrix representations of linear transformations in arbitrary bases
Math 346 Lecture 7 - Possible kinds of solutions; Homogeneous Systems; Determinants; Cramer's Rule
Math 346 Lecture 9 - Span and Linear Independence
Math 346 Lecture 13 - Matrix Transformations and how they connect to general linear transformations
Math 346 Lecture 9 - More on properties of determinants and Invertible matrices
Math 346 Lecture 16 - Span and Linear Independence
Math 346 Lecture 13 - Vector Spaces
Math 346 Lecture 13 - Span
Math 346 Lecture 15 - Linear independence and proving statements
Math 346 Lecture 16 - Coordinates and bases