IQIS Lecture 7.10 — CPTP maps
IQIS Lecture 7.7 — The depolarising channel
IQIS Lecture 7.5 — Kraus representations
IQIS Lecture 7.11 — Choi matrix
IQIS Lecture 7.12 — Summary: Stinespring and Kraus representations
IQIS Lecture 8.6 — Inverting quantum channels
IQIS Lecture 7.9 — Expand, Evolve, Reduce
IQIS Lecture 8.14 — Seven-qubit code and transversal constructions
IQIS Lecture 7.6 — Properties of Kraus representations
SpinDynamica Lecture 2: Superoperators in SpinDynamica
IQIS Lecture 8.1 — Overview of quantum error correction
Mathematical methods of quantum information theory, Lecture 6
Quantum Theory Lecture 8: Preparations/Measurements/Transformations. Stinespring dilatation theorem.
Daniel Spiegel - Completely positive maps and Stinespring’s theorem
Positive Maps and Entanglement in Real Hilbert Spaces, Vern Paulsen - 22/05/23
Channels, Maps and All That - Dariusz Chruściński
Introduction to quantum CPTP maps and quantum (non) Markovianity- Gustavo Montes
James Hefford -- CPM Categories for Galois Extensions
Markus Grassl: Computing Numerical and Exact SIC-POVMs
MOE estimates for quantum channels arising from random isometries and free probability